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Summary

Parasitic worms are able to survive in their mammalian host for many years
due to their ability to manipulate the immune response by secreting
immunomodulatory products. It is increasingly clear that, reflecting the anti-
inflammatory actions of such worm-derived immunomodulators, there is an
inverse correlation between helminth infection and autoimmune diseases in
the developing world. As the decrease in helminth infections due to increased
sanitation has correlated with an alarming increase in prevalence of such dis-
orders in industrialized countries, this ‘hygiene hypothesis’ has led to the
proposal that worms and their secreted products offer a novel platform for
the development of safe and effective strategies for the treatment of autoim-
mune disorders. In this study we review the anti-inflammatory effects of one
such immunomodulator, ES-62 on innate and adaptive immune responses
and the mechanisms it exploits to afford protection in the murine collagen-
induced arthritis (CIA) model of rheumatoid arthritis (RA). As its core
mechanism involves targeting of interleukin (IL)-17 responses, which despite
being pathogenic in RA are important for combating infection, we discuss
how its selective targeting of IL-17 production by T helper type 17 (Th17)
and γδ T cells, while leaving that of CD49b+ natural killer (NK and NK T)
cells intact, reflects the ability of helminths to modulate the immune system
without immunocompromising the host. Exploiting helminth immuno-
modulatory mechanisms therefore offers the potential for safer therapies
than current biologicals, such as ‘IL-17 blockers’, that are not able to dis-
criminate sources of IL-17 and hence present adverse effects that limit their
therapeutic potential.
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Introduction

Rheumatoid arthritis (RA) is a common autoimmune dis-
order in the western population, characterized by joint
swelling, synovial membrane inflammation, cartilage
destruction and disability. The aetiology of human RA has
not been fully elucidated, but the current hypothesis is that
deregulation of interleukin (IL)-17 production is the

driving force behind activation of T and B cells as well as
macrophages, which release cytokines such as IL-1, IL-6 and
tumour necrosis factor (TNF)-α [1]; this is supported by
experiments in mice deficient for either IL-17 or IL-23, the
latter a cytokine essential for T helper type 17 (Th17) cell
survival, as both types of ‘knock-out’ mouse are resistant to
the development of collagen-induced arthritis (CIA) [2,3].
In addition, IL-17 is found to be elevated in serum and
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synovial fluid from RA patients [4–6]. The cytokine storm
resulting from IL-17 dysregulation causes hyperplasia of
synovial tissues, local joint damage through increased pro-
duction of metalloproteinases and activation of osteoclasts,
resulting in irreversible structural damage to cartilage, bone
and ligaments [7,8]. Furthermore, leakage of IL-1, IL-6 and
TNF-α from the site of inflammation results in systemic
inflammation, causing anaemia, thrombocytosis, fatigue
and osteoporosis [9].

Therapy is aimed at restricting inflammation and classi-
cally includes non-steroidal anti-inflammatory drugs or
steroids such as methotrexate, which may result in serious
side effects, although a new generation of biological thera-
pies has been developed recently as a consequence of our
better understanding of the inflammatory process in health
and disease. Some of the successful biologicals used in RA
are cytokine blockers, including reagents targeting TNF
(beginning with etanercept and infliximab) [10] and the
inhibitory antibody tocilizumab, which targets the IL-6R
[11]. Following the relative success of TNF and IL-6R
blockers in clinic, it is likely that the list of licensed thera-
pies will soon include other blocking antibodies, such as
those specific for IL-17 (secukinumab and ixekizumab)
[12,13], IL-17R (brodalumab) [14] or the p40 subunit
common to both IL-12 and IL-23 (ustekinumab) [15,16],
that are currently approved for treatment of other IL-17-
dependent autoimmune diseases such as psoriasis. Other
potential therapies include lymphocyte-targeting agents for
both B and T cells [17,18], as well as small molecule inhibi-
tors of signal transduction pathways, of which the most
advanced are the selective Janus kinase (JAK) inhibitors that
target cytokine-associated JAK–signal transducer and acti-
vator of transcription (STAT) signalling [19]. However,
despite these substantial recent advances and the consider-
able efficacy of some of these drugs [20,21], the proportion
of patients achieving disease remission still remains low.
Also, as steroids and the biologicals target the cause of the
disease via suppression of the immune response, they are
associated with an increased risk of infection [22,23]: thus,
new treatments are still urgently needed.

Parasitic helminths comprise worms found within two
phyla, Platyhelminthes (tapeworms, flukes) and Nematoda
(roundworms), and it has been known for many years that
infection with helminths can ameliorate severity of RA in a
number of animal models. This was first reported for infec-
tion with the nematode Syphacia oblevata, which reduced the
incidence of adjuvant-induced arthritis in infected rats [24],
but similar effects have been observed during experimental
infection with Schistosoma japonicum, S. mansoni, Ascaris
suum and Hymenolepsis diminuta [25–27]. In each case,
reduced disease severity is via modulation of the pro- and
anti-inflammatory cytokine balance, resulting in reduced
TNF-α and IL-17 and up-regulated IL-4 and IL-10 produc-
tion. Low incidence of RA has been reported in developing
countries, where the helminth infection rate is higher

[28,29], but in contrast to the inverse correlation described
for other autoimmune diseases, such as type 1 diabetes and
multiple sclerosis, or allergies, the relationship between
human RA and the presence of helminths has not been well
defined [30–33]. Only lately, Panda et al. reported a clear
absence of filarial nematode infection in RA patients from
Odisha, India, an area endemic for Wuchereria bancrofti [34],
the primary agent for eliciting lymphatic filariasis. Thus, as
helminths do not overwhelmingly immunosuppress the host,
yet seem to be a factor in protection against the development
of RA, the question is: can we learn from parasitic worms
how to develop better and more effective biological therapies
for RA? This hypothesis has been the focus of intense inter-
est, first with respect to understanding the mechanisms
underlying helminth-dependent immunomodulation, and
secondly in identifying the helminth-derived molecules
responsible for such immunoregulation. Although the precise
mechanisms of helminth-mediated immunomodulation
remain to be fully defined, much progress has been achieved,
as summarized below.

Mechanisms associated with helminth
immunomodulation: basis for the
hygiene hypothesis

Helminths infect hundreds of millions of people, resulting
in a major impact on public health; however, although
helminths can cause severe medical conditions, such as
elephantiasis, chronic skin lesions and blindness, infection
is usually asymptomatic. There are reports of nematodes
surviving in the host for more than a decade [35] due to
their ability to manipulate the immune response by secret-
ing excretory–secretory (ES) products. ES products, which
are often glycosylated, are found in the bloodstream of
infected hosts and dictate particular functional immune
responses that allow persistence of the parasite, typically by
inducing Th2-associated cytokines such as IL-4 and IL-5
and expansion of regulatory cell subsets that increase IL-10
production, such as regulatory T cells (Tregs), regulatory B
cells (Bregs) and regulatory macrophages [36]. The combina-
tion of simultaneous Th2 proinflammatory and IL-10 regu-
latory responses is often defined as a ‘modified Th2
response’ that is inherent to infection by helminths, and is
the legacy of millions of years of host–parasite co-evolution
[37]; this maintains homeostatic balance, preventing an
exaggerated response against the parasite that could also
threaten the survival of the host without fully compromis-
ing host responses to other pathogens, as infected individu-
als are not generally immunosuppressed. However,
helminths may have an impact on the host’s ability to cope
with some infections requiring strong Th1 responses, such
as tuberculosis or in bacillus Calmette–Guérin (BCG) vacci-
nation [38]. Clearly, this is an important factor that must be
taken into account, particularly as vaccine development
studies are performed in ‘clean’ animal models, which lack

FOCUS ON HYGIENE HYPOTHESIS AND APPROACHES TO MODULATING THE MICROBIOME

M. A. Pineda et al.

14 © 2013 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society
for Immunology, Clinical and Experimental Immunology, 177: 13–23



helminths, in contrast to the scenario pertaining in human
disease, especially in developing countries with a high inci-
dence of helminth infections.

The fine balance between helminths and host immune
responses has been abruptly altered in the last century, due
to increased hygiene in the developed world: only 65 years
ago 36% of the European population suffered helminth
infections, while now there is essentially an absence of
intestinal worms [38–40]. In terms of evolution, this
sudden clearance of ‘old friends’, such as helminths, has
unbalanced the immune system that was designed to
co-exist with helminths. This led Strachan to formulate the
‘hygiene hypothesis’ [41], proposing that the lack of
common pathogens, such as helminths, has increased the
prevalence of allergies and autoimmune diseases in areas
where sanitation has improved. A number of studies
support this theory, showing that in developing countries,
where the incidence of helminth infestation is still high, the
prevalence of autoimmunity/allergies remains significantly
lower than that of the industrialized world [30,42–44].

This is the basis for hypothesizing that infection with
helminths could be beneficial to patients suffering from
autoimmune diseases, as indicated experimentally in animal
models for RA, diabetes, asthma, multiple sclerosis or colitis
[45–50]. Indeed, promising results have been obtained in
clinical trials of multiple sclerosis and inflammatory bowel
disease patients treated with eggs of Trichuris suis, a parasite
that infects pigs, and thus causes only transient infection in
humans [51,52]. Although use of such live parasites is
a possible option, research has focused increasingly on
identifying the molecules that are responsible for immune
regulation, with immunomodulators being isolated from
Schistosoma eggs, such as the glycolipid LFNPIII, which
targets Toll-like receptor (TLR)-4, mannose receptor and
dendritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin (DC-SIGN) to induce Th2
responses, IL-10 production and forkhead box protein 3
(FoxP3+) Treg cell expansion [53–55] and the glycoprotein
omega-1, that exhibits similar properties [56,57]. Similarly,
TLR-associated pathways are targeted by other helminth-
derived products, such as Lyso-PS from S. mansoni [58] and
ES-62, isolated from the filarial nematode Acanthochei-
lonema viteae.

ES-62

ES-62 is one of the best-understood helminth-derived
products, being the major component of the secreted prod-
ucts of the rodent filarial nematode A. viteae and a readily
available homologue of ES products produced by human
pathogens (Brugia malayi, Onchocerca volvulus and Loa
loa), but not non-parasitic worms. A. viteae is a nematode
that does not contain any species of Wolbachia, a symbiotic
bacteria present in some subfamilies of filarial nematodes
[59], and therefore the effects of ES-62 are truly helminth-

derived. ES-62 is a tetrameric glycoprotein (∼240 kDa),
comprising identical monomers of ∼62 kDa, which has
been cloned, sequenced and subjected to biophysical and
biochemical analysis that has allowed the identification of
four potential N-linked glycosylation sites, as well as its low
resolution tertiary structure [60]. Although some protease
activity has been described for the protein backbone [61], it
does not appear to exhibit any major immunomodulatory
activity, and thus its biological relevance remains elusive.
Rather, its N-glycans, formed from a high-mannose
complex, trimmed to the tri-mannose core that can be
fucosylated and then extended by N-acetylglucosamine
residues [60], are decorated with an unusual post-
translational modification, phosphorylcholine (PC), and it
is this moiety that confers immunomodulatory activity on
ES-62. Administration of purified ES-62 to mice is suffi-
cient to mimic the general effects of helminth infection, in
particular a strong Th2-biased immunoglobulin (Ig)G1

humoral response. This switches towards IgG2a when mice
are deficient for IL-10 [62], suggesting that immune modu-
lation towards Th2 by ES-62 requires this anti-
inflammatory cytokine.

ES-62 and immunomodulation

ES-62 has been shown to mimic the effect of nematodes
during natural infections by its ability to suppress B cell
proliferation via selectively disrupting B cell receptor (BCR)
coupling to key elements in the phosphoinositide-3-kinase,
protein kinase C and extracellular receptor kinase (Erk)–
mitogen-activated protein kinase (MAPK) signalling cas-
cades. This uncoupling is associated with induction of
negative feedback regulatory mechanisms including the
tyrosine phosphatase, Src homology region 2 domain-
containing phosphatase-1 (SHP-1) to dephosphorylate
immunoreceptor tyrosine-based activatory motifs (ITAMs)
as well as Ras GTPase-activating protein (RasGAP) and the
dual specificity kinases (DUSP), Pac-1 to terminate ongoing
Ras and Erk signals, respectively [63]. Interestingly,
however, analysis of the effects of in-vivo release of ES-62 by
implanted pumps, designed to mirror the release of ES-62
during nematode infection, revealed that whereas follicular
B cells demonstrated such reduced proliferation in response
to BCR ligation, B1 cells recovered from the peritoneal
cavity showed increased proliferation and IL-10 production
[64], suggesting that ES-62 could differentially modulate
distinct B cell subsets.

ES-62 similarly [65] desensitized T cell receptor (TCR)
signalling through disruption of coupling to phospholipase
D (PLD), protein kinase C (PKC), PI-3-K and Ras–Erk
MAPK signalling and this was reflected in vivo by the ability
of ES-62 to down-regulate heterologous antigen
[ovalbumin (OVA)]-specific Th1 (in terms of proliferation
and IFN-γ production) responses in a transgenic-TCR
CD4+ T cell adoptive transfer system [66]. Here, ES-62-
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treated mice showed elevated IL-5, but not IL-4, responses
and, consistent with impaired migration of T cells to the B
cell follicles and reduced Th1 responses, blocked IgG2a pro-
duction. Interestingly, analysis of the ability of ES-62 to
target B–T cell cooperation in vivo, by transferring OVA-
specific T cells together with hen egg lysozyme (HEL)-
specific B cells, showed that this was not responsible for the
polarizing of T cell responses towards a Th2-type pheno-
type [67]. Rather, antigen-presenting cells (APCs) such as
DCs are targeted by ES-62 [65] to promote Th2-responses,
perhaps as a result of its inhibition of Th17 polarization
[68,69]. Interestingly, ES-62-mediated down-regulation of
Th17 cell differentiation can also occur via mechanisms
independent of APCs [69], in particular involving the inhi-
bition of myeloid differentiation primary response gene 88
(MyD88)-mediated pathways in activated T cells.

As ES-62 acts to modulate the phenotype of Th2
responses predominantly by targeting maturation of DCs
and their consequent ability to prime naive T cells, the
effects of the nematode product on macrophages have also
been investigated, as these cells similarly play key roles in
directing the phenotype of immune responses. Although
exposure to ES-62 increases IL-12p70, TNF-α and IL-6 pro-
duction by macrophages slightly but significantly [64], it
also causes highly suppressed cytokine production in
response to subsequent stimulation with lipopolysaccharide
(LPS)/IFN-γ, and this reflects down-regulation of p38
MAPK activity [70]. These effects are a result of ES-62 tar-
geting TLR-4 and its downstream protein adaptor MyD88,
as the observed ES-62-mediated, low-level IL-12 and
TNF-α production by APCs is abrogated in both TLR-4−/−

and MyD88−/− cells [71]. However, ES-62 appears to signal
via TLR-4 in an atypical manner because macrophages and
dendritic cells from TLR-4-mutant C3H/HeJ mice respond
normally to ES-62 [71]. C3H/HeJ mice present a point
mutation in the intracellular Toll/interleukin-1 receptor
(TIR) domain of TLR-4, such that although they express
normal levels of TLR-4 at the cell surface, they fail to
produce proinflammatory cytokines in response to LPS
[72]. Nevertheless, it is still uncertain whether ES-62 binds
directly to TLR-4 or acts via one or more co-receptors. For
example, ES-62 has been shown to interact with as-yet
undefined proteins of ∼135 and ∼82 kDa in lymphocytes,
but only with the latter in monocytes, and perhaps reflect-
ing this, while TLR-4 expression is essential for internaliza-
tion of ES-62 by macrophages, this is not the case for B cells
[73]. In addition to subverting proinflammatory TLR-4-
dependent pathways, ES-62 also suppresses TLR-2 (bacterial
lipopeptide; BLP) and TLR-9 [cytosine–phosphate–
guanosine (CpG)] responses via such atypical TLR-4/
MyD88 signalling, and the PC moiety of ES-62 appears to
be responsible for these anti-inflammatory activities in
APCs [74].

Much interest has focused recently on the APC capabili-
ties of mast cells (MCs), particularly in the context of their

priming of Th2 responses in reaction to parasites and their
immunomodulary products [75]. MCs constitute a hetero-
geneous population of granulated tissue-resident cells of
haematopoietic lineage that vary in their morphology, loca-
tion and composition, displaying differential protease,
eicosanoid and proteoglycan content that allows them to
influence a number of immune responses, ranging from
innate responses to invading pathogens through to tissue
repair and inflammation resolution during the course of
infection as well as their widely documented role in allergic
hypersensitivity [76,77]. Although the effects of ES-62 on
mast cell APC function have yet to be established, ES-62
directly induces MC hyporesponsiveness in terms of
antigen-induced calcium mobilization, degranulation and
release of leukotrienes, prostaglandins and proinflam-
matory cytokines by a mechanism involving TLR-4-
mediated sequestration and consequent degradation of
PKCα, a molecule required for coupling of FcεRI to
calcium mobilization [78]. While hyporesponsiveness of
mature peritoneal-derived mast cells (PDMC) and connec-
tive tissue mast cells (CTMC) reflects such down-regulation
of PKCα and calcium signalling, in mucosal-like mast cells
derived from bone marrow progenitors (BMMC), ES-62
additionally down-regulates MyD88 expression, presumably
reflecting its ability to also induce hyporesponsiveness to
the strong LPS responses observed in these MC [79].

ES-62, anti-inflammatory potential in
rheumatoid arthritis

Collectively, these data indicating that ES-62 can modulate
both innate and adaptive responses by subverting TLR-4
signalling suggest that it may be a suitable candidate to
treat many inflammatory disorders, as dysregulated TLR
signalling has been implicated in the perpetuation of
chronic inflammation [80]. Indeed, ES-62 has been shown
to protect mice against CIA, a model of RA in which
immune tolerance is broken by immunization with bovine
collagen and complete Freund’s adjuvant (CFA). This CIA
model exhibits many of the characteristics of human RA,
with the development of arthritis being accompanied by
cellular and humoral immune responses to collagen [7],
making the model suitable for the study of innate and
adaptive responses in RA. Similarly, as a lack of CFA dra-
matically reduces disease incidence in the model, the use
of this adjuvant perhaps mirrors the proposed role for
commensal bacteria in breaching self-tolerance in human
RA [81].

In the CIA model, ES-62 suppresses development of
collagen-specific proinflammatory immune responses and
reduces articular inflammation and cartilage erosion, even
after the onset of overt pathology [82]. Thus, collagen-
induced IFN-γ, TNF-α and IL-6 release were suppressed
significantly, whereas that of IL-10 was up-regulated in
draining lymph node cells from mice undergoing CIA that
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received ES-62. Reflecting this, levels of collagen-specific
IgG2a, but not IgG1, in serum were reduced by ES-62. Most
of the anti-inflammatory actions of ES-62 in CIA appear to
be dependent on the PC moiety, as PC conjugated to an
unrelated protein such as OVA reduces the severity of
disease and also suppresses collagen-specific Th1 cytokine
production; however, it is not able to reduce levels of anti-
collagen IgG2a, indicating that the glycoprotein may still be
needed, at least in part, for some of the protective actions
of ES-62 [83]. Further supporting the importance of PC,
recombinant ES-62 (produced in yeast) lacking PC did not
modify CIA progression. Although not found in mammals,
PC-containing glycans are conserved within roundworms
such as A. viteae, O. volvulus and B. malayi, and even in the
non-parasitic Caeorhabditis elegans, where the oligosac-
charide biosynthetic enzymes responsible for PC transfer
have been well characterized [84], suggesting that nema-
todes may have exploited the PC biosynthetic machinery to
adapt to parasitism. Perhaps consistent with this, the nema-
tode B. malayi secretes a leucyl aminopeptidase termed
LAP, which is an N-acetylglucosaminyltransferase and dis-
tinct from its ES-62 homologue, the major PC-bearing
peptide [85], showing that PC moieties are attached to
non-related proteins in different helminth species.

Interestingly, given that ES-62 exhibits therapeutic poten-
tial in CIA (Fig. 1a) and can suppress proinflammatory
responses by peripheral blood mononuclear cells (PBMC)
and synovial cells from RA patients [82], we have recently
observed that ES-62 failed to protect mice in the murine
collagen antibody-induced arthritis (CAIA) model of RA
(Fig. 1b). In the CAIA model, disease is induced by a cock-
tail of collagen-specific monoclonal antibodies that, when
administered with LPS, results in the formation of large
immune complexes at sites of cartilage. Administration of
such arthritogenic antibodies essentially provides a model
for immune complex-effector mechanisms in the joints, as
it bypasses the initial T cell priming by DCs and subsequent
T–B cell interactions required for the generation of patho-
genic anti-collagen antibodies in the CIA model. That such
CAIA mice are not protected by ES-62 may be explained by
its mode of action in CIA, which relies on the modulation
of DC function, to suppress initiation and polarization of
adaptive collagen-specific responses such as Th1/17-
mediated inflammation and resultant pathogenic antibod-
ies; thus, as the breach of immunological tolerance in the
CAIA model is induced by injection of premade
arthritogenic antibodies, which bypasses these pathogenic
pathways, this probably explains why CAIA is refractory to
immunomodulation by ES-62.

Furthermore, we have shown recently that the efficacy of
ES-62 in the CIA model is associated not only with attenu-
ated Th1 responses, but also with down-regulation of IL-17
production in draining lymph nodes and joints of CIA
animals [69]. IL-17 appears to be a master regulator of
proinflammatory responses in both allergic and autoim-

mune inflammatory diseases and, thus, it is currently a
major interest of the pharmaceutical industry [86], as evi-
denced by the new therapies targeting this cytokine, includ-
ing the anti-IL-17A monoclonal antibody, ixekizumab
[87,88] and the anti-IL-17-receptor monoclonal antibody
brodalumab [14], both of which have been evaluated in
Phase II clinical trials to treat RA and psoriasis. Similarly,
secukinumab, another IL-17 neutralizing antibody, has
undergone Phase III trials for non-infectious uveitis [89].
However, despite promising indications, IL-17 is a key
cytokine in host defence against extracellular bacteria and
fungi at mucosal surfaces and hence blocking IL-17 might
lead to higher infection rates, a major concern in drug dis-
covery. Indeed, chronic mucocutaneous candidiasis has
been reported in patients with autoimmune polyendocrine
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Fig. 1. Excretory–secretory (ES)-62 is effective in the

collagen-induced arthritis (CIA) model, but not in the collagen

antibody-induced arthritis (CAIA) model. (a) DBA1J mice

undergoing CIA (receiving collagen injections at days 0 and 21) were

treated with ES-62 (2 μg, at days −2, 0 and 21), and clinical scores

were recorded along with paw width, where significant protection was

observed compared to phosphate-buffered saline (PBS)-treated mice.

(Ë = PBS, n = 11; □ = ES-62, n = 11); *P < 0·05. (b) For the CAIA

model, C57BL/6 mice were administered 2 mg of ArthritoMab

antibody cocktail (MD Bioscience) on day 0 followed by a

lipopolysaccharide (LPS) boost on day 3. Mice were treated with

ES-62 (2 μg, daily from days −1 to 6) and arthritic scores and paw

width were recorded (Ë = PBS, n = 7; □ = ES-62, n = 7).
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syndromes associated with production of autoantibodies
against Th17 cytokines [90], and similar effects have been
observed in clinical trials of IL-17 blockers in Crohn’s
disease [91]. Therefore, the ability of ES-62 to modulate
IL-17 responses without immunocompromising the host
offers an appealing alternative to neutralizing antibodies for
treatment of RA. ES-62 down-regulates IL-17 production
by both innate (γδ T cells) and adaptive (Th17 CD4+ T
cells) cells in CIA, via DC-dependent and -independent
mechanisms [69]. Although ES-62 reduces the levels of γδ T
cells and their ability to produce IL-17 in CIA (Fig. 2a), we
did not observe any effect of ES-62 on CD49b+ natural killer
(NK and iNK T) cells (Fig. 2b), other innate lymphocytes
that are an important source of IL-17 both during infec-
tions and also in CIA in response to IL-23 [92,93]. Unlike
Th17 CD4+ T cells, NK T cells do not require IL-6 to induce
IL-17 [94–96] and these innate lymphocytes constitutively

express transcriptional regulators for IL-17 production
[96], allowing them to produce IL-17 rapidly. That ES-62
targets IL-17 production by CD4+ and γδ T cells, but does
not modulate IL-17 production by CD49+ NK cells, suggests
that ES-62-based therapy would still allow the rapid and
transient NK T cell-mediated responses required for
immune surveillance and host defence, while down-
regulating long-term, adaptive IL-17 production resulting
in autoimmunity and inflammation. Such balanced action
by ES-62 is consistent with the observed ability of
helminths to immunomodulate without severely compro-
mising the host immune system.

How ES-62 selectively targets γδ T cells but does not
modulate NK cells is still unknown, as although NK and γδ
T cells share some markers with Th17 T cells, such as CCR6
and IL-23R [94,97] and express some pattern recognition
receptors (TLR-2, Dectin-1), TLR-4 is not generally consid-
ered to be expressed by either γδ or NK cells, findings
consistent with our studies demonstrating that ES-62-
mediated suppression of IL-17 γδ T cells responses was
DC-dependent [69]. However, as TLR-4 is a major target of
ES-62, we hypothesized that differential expression of this
pattern recognition receptor could explain the ability of
ES-62 to directly suppress some parameters of γδ T cell acti-
vation, for example CD44 expression, that may reflect
ES-62-mediated modulation of γδ T cell migration in CIA
[69]. Interestingly, we indeed found that some DLN γδ T
cells, but not CD49+ NK cells, expressed TLR-4 during CIA
(Fig. 3), although such TLR-4 expression in γδ T cells was
associated with a complete lack of IL-17 production
(Fig. 3). This finding potentially provides an experimental
mechanism for distinguishing IL-17-producing γδ T cells in
vivo, and a precedent for differential surface markers being
associated with particular profiles of cytokine expression by
γδ T cells has been reported previously, as IL-17+ γδ T cells
and IFN-γ+ γδ T cells selectively express the markers CD25
and CD122, respectively [98,99]. Whether or not ES-62 can
modulate the function of such TLR-4-expressing γδ T cells
during CIA is still unclear, but this is an attractive hypoth-
esis not only because CD49+ NK cells do not express TLR-4
and are unaffected by ES-62 (Figs 2 and 3), but also because
a subset of γδ T cells, defined by their ability to produce
IL-22, but not IL-17, has been shown to be protective in
models of colon inflammation [100] and lung fibrosis
[101]. Indeed, there is increasing evidence that IL-17 and
IL-22 may differentially play (dual) pathogenic and protec-
tive roles in inflammatory disease, depending on the par-
ticular disorder [102–104] with, for example, data from
both animal models and human disease indicating that, in
addition to its pathogenic role during the initiation phase of
disease, IL-22 may play an inflammation-resolving role
during established arthritis [105,106]. Thus, the ability of
ES-62 to induce ‘protective’ γδ T cells, such as IL-22-
producers, via such TLR-4 signalling and/or differentially
and temporally modulate IL-17 and IL-22 production by
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distinct subsets of γδ T cells is currently under investigation
in our laboratory.

Conclusions and future perspectives

Although many questions still remain to be answered,
advances during the last 10–20 years in our understanding
of how helminths interact with their hosts have been strik-
ing. Helminth infections and the use of helminth-derived
products, such as ES-62, serve as valuable tools for dissect-
ing key regulatory check-points balancing proinflammatory
responses and resolution of pathogenic inflammation that
may ultimately identify new clinically relevant therapeutic
targets. Although perhaps ironic, the possibility of exploit-
ing parasites for the benefit of humans has therefore
attracted great interest in terms of drug discovery for
autoimmune and inflammatory diseases and has involved
a two-pronged approach: living worms and isolated
helminth-derived products. Some live forms of worms have
already been tested in clinical trials, notably T. suis OVA in

patients with immune-mediated diseases [51]. These
studies demonstrated the safety and efficacy of helminth
treatment [107], although some other trials highlighted sig-
nificant adverse effects [108]. Therefore, although the use of
live worms in the clinic has shown promising results, it may
be accompanied by significant problems. An alternative to
this could be using isolated products such as ES-62 but,
similarly, biologicals such as ES-62 have important limita-
tions as therapies. First, the cost of ES-62 production would
be excessive at the industrial level, and secondly, repeated
exposure to a large foreign protein could induce anaphylac-
tic responses. Therefore, molecules such as ES-62 are prob-
ably best used as templates to design new small molecule
drugs for RA; indeed, we have recently been successful in
synthetizing a library of novel small molecule analogues
based on the anti-inflammatory PC moiety present in ES-62
that exhibit anti-inflammatory actions [109](International
Patent Application no. PCT/GB2013/051988). Thus, such
modified drug-like molecules reproducing the protective
activity of ES-62 in CIA (summarized in Fig. 4), without
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compromising the ability to fight infections, may provide a
new class of therapies to combat RA and other Th17-based
inflammatory disorders.
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